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The state of strain in plates connected by bolts or pins has several times been ex- 
amined. For example, infinite elastic orthotropic plates with circular holes have been ex- 
amined [i], with the plates loaded by pins in the holes. The solution is defined for two 
contacting elastic bodies (plate and pin) as complex Fourier series. The effects of the pin 
elasticity on the stresses in the plate are minor. Studies have also been made on the ef- 
fects of the plate orthotropy parameters, the friction, and the gap between the pin and the 
edge of the plate. In all these cases, the contact region occupies less than half of the 
edge of the hole, and the maximal circumferential stress occurs in the part where there is no 
contact near the point where the plate is close to the pin. 

The stresses around a single bolt or pin in a finite plate have been calculated by the 
finite-element method [2-4]. The stress distribution has been derived [2] in a layered com- 
posite around a hole loaded by an elastic pin. The contact zone was determined. The radial 
pressure on the pin differed from sinusoidal. In [3, 4], the pin was taken as absolutely 
rigid, and the boundary conditions at the edge of the hole were not defined but instead set 
arbitrarily. It was assumed that the contact region occupied half of the edge. In [3], a 
cosine radial pressure distribution was specified there, while in [4], zero radial displace- 
ments were defined in accordance with a mode of loading different from that in [3]. The 
[5, 6] experiments in general confirm the stress distribution in the plate around a pin as 
found theoretically in [i], but the boundaries of the contact region were not given. There 
may be nonzero radial stresses at the edge of the hole only in the contact region, but in [5] 
they were observed for half of the edge and in [6] for more than half of it. 

Here I consider a circular plate for convenience, which is loaded in a way of practical 
interest. At the outer edge of the plate, the conditions correspond to one-sided uniaxial 
loading. The pin is taken as immobile. A treatment of Signorini type is formulated having 
an unknown contact region. Finite-element methods are used to derive the state of stress 
and strain. 

I. Basic Equations. We consider the planar stress states in a polar coordinate system. 
We express the strains in terms of the displacements, the equilibrium equation, and Hooke's 
law as [7] 

e n  = u l . 1 , . e ~  = T(u~,~  + uO, e12 = (ul,2 + rU~,l - - u 2 ) ,  

( re~ l ) , l  + ~1~,~ - -  ~ 2  + r p l  = O, 
~,~ + (r~),~ + ai~ + rp~ = O, 

t t " t + ~  
e~,  = - g  (~ t~  - -  ~ ) ,  e~2 = g (~2~ - -  ~ 1 ~ ) ,  el~ = ~ ~ .  

Here u i are the displacements, eik are the strains, aik are the stresses, and Pi the bulk 
forces (i, k = i, 2) in the polar coordinate system (r, 8), with r radius, 8 angle, E Young's 
modulus, and ~ Poisson's ratio. The subscripts I and 2 denote quantities referred to the r 
and 8 axes, while i and 2 after commas denote partial differentiation with respect to r and 
8 correspondingly. The intensity of the tangential stresses is 

We introduce the functional 

* = [4, + 2 elle,, + + 2 (I - 4,1 - 
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- p l u l  - -  p2u2} r d r d  0 - -  .[ [gnn(ull  ~ - u f l l  ) + anz (ul l l  + u~12)] dl  ( 1 . 1  ) 
r 

in the region ~ occupied by the body and bounded by the edge r. The integration over F is 
done with ~2 to the left of F; Onn and OnZ are the normal and tangential stresses, which are 
defined by 

o~,~ = onl22. - 20i21112 + 02~112, 

o.z  = (on  - -  o22)1112 -5 on(122 - -  112), ll = dr/dl, 

l 2 = rdO/dl, dl = [(dr) ~ -[- (rdO)2lV 2 

(s and s are the components of the unit vector tangential to F). 

Here the deformations should be expressed in terms of the displacements. The displace- 
ments are varied. The values of o n and Ons in the integral over F are fixed on varying ~. 

As ~ is stationary, one gets equilibrium equations and expressions for the normal and 
tangential stresses on r in terms of the displacements. With given boundary conditions, 
those equations give the displacements, which themselves give all the other functions. 

2. Formulation. We have an annular elastic isotropic plate having ratio of outside 
radius to inside radius R/p = 5 (Fig. i). Within the hole is a pin with the same radius p. 
On the right-hand half of the outer edge of the plate, conditions are specified for uniaxial 
loading along the x axis with stresses Oxx = S (the arrows in Fig. 1 along the x axis show 
the loading vectors), while the left-hand half edge is not loaded. There are no bulk forces 
(Pl = P2 = 0). The pin is not displaced on loading. We neglect any deformation in the pin 
and the friction between it and the edge of the plate. 

The system is symmetrical about the x axis, so we consider only the upper half of the 
plate (Fig. i) with the following boundary conditions: 

Oll = S3os2O, a12 = - - S s i n 0 c o s O  f o r  ( 2 . 1 )  

r = R ,  0 4 0 4 0 . 5 n ;  

011 = O12 = 0 for r = R ,  0 .5Z  4 0 4  ~;  

U 2 = 0, O13 = 0 f o r  P 4 r ~  R ,  0 = 0artd0 = ~;  ( 2 . 2 )  

u 1 = 0 ,  a12 = 0 ,  O l l  4 0  f o r  o l l  = o n = 0 ,  U 1 > / 0  ( 2 . 3 )  

f o r  r = p ,  0 ~ 0 4 ~ .  

The radial displacements are u I = 0 at the points of contact between the plate and pin in 
(2.3), with the edge of the plate pressed onto the pin, so the radial stresses o!i cannot be 
tensile (on~0). At points where there is no contact, the edge of the plate is unloaded 
(o11 = o~2 = 0), and the distance from the edge of the plate to the center of the pin should 
be not less than the radius of the pin, i.e., ,u12-~u2 i @ 2 p u l ~ - O ,  which on linearization is 
replaced by u1~0. We have a system of Signorini type [8] having an unknown region of con- 
tact between plate and pin. Defining that region is facilitated by the simple geometry. One 
naturally assumes that the region occupies a certain segment r = p, 0c40~, and then we get 
boundary conditions at the internal edge of the plate: 

Gn = ~12 = 0 f o r  r = p, 0 4  O ~ Oe; ( 2 . 4 )  

U 1 = 0 ,  O12 = 0 f o r  r = p, 0 e 4 0 4  ~.  

A t  r = p a n d  6 = 0 c ,  o ~ l  = 0 .  

3. Finite-Element Treatment with a Fixed Contact Area. Let the contact between the 
plate and pin be known. Then the finite-element treatment for the equilibrium with boundary 
conditions ~ is as follows. The region ~ in which we seek the solution is split up into 
rectangular nine-node isoparametric elements [9] in which the displacements in an element 
are approximated by quadratics in each of the variables r and 8. The finite-element equations 
are formulated in terms of the node displacements on the basis of the minimum potential energy 
principle of (I.I). The integrals over the area of an element and over the sides on F are 
based on a three-point Gauss quadrature formula [9]. The conditions for continuity in the 
displacements apply at the boundaries between elements. At each node, the sum of all the 
forces acting there is set as zero as defined from the virtual-displacement principle [9]. 

The complete system is solved by compact Gauss exclusion on the basis of the global 
rigidity matrix being symmetrical and of strip type [9-11]. 
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4. Results. The angular coordinate 8 c for the extreme point in the contact region is 
found by dividing the segment into halves as the root for the radial stress Oil calculated 
for r = p and 8 = 8 c from the solution for the equilibrium subject to the boundary conditions 
(2.1), (2.2), (2.4) and may be considered as a function of 8 c. In our solution, we suc- 
cessively tested 8c/~ = 0.5, 0.52, 0.525, 0.5225, and we found that oii = 0 for r = p and 
8 = 8 c with the required accuracy if 8 c = 0.5225~, and then conditions (2.3) are satisfied. 

We now describe the equilibrium subject to (2.1), (2.2), (2.4) when 8 c = 0.52259. Pois- 
son's ratio is ~ = 0.3. 

Then the text and the figures give the dimensionless quantities 

t t ! I r'=ir, (611, 6~2, 6i2, J') = ~ ( 6 i l ,  622, 612, f),  
P 

where  a p r i m e  t o  a d i m e n s i o n l e s s  q u a n t i t y  i s  f o r  b r e v i t y  o m i t t e d .  

The p l a t e  i s  s p l i t  up i n t o  q u a d r i l a t e r a l  n i n e - m o d e  i s o p a r a m e t r i c  L a g r a n g i a n  e l e m e n t s  by 
two f a c i l i t i e s  o f  c o o r d i n a t e  l i n e s :  1) r a d i a l  l i n e s  b e g i n n i n g  a t  O = 0 w i t h  i n t e r v a l s  i n  O 
o f  ~ m u l t i p l i e d  by f a c t o r s  ( 0 . 0 4 ,  0 . 0 8 ,  0 . 1 ,  0 . 1 0 2 5 ,  0 . 1 ,  0 . 0 5 ,  0 . 0 3 ,  0 .0152  0 . 0 1 ,  0 . 0 1 5 ,  
0 . 0 3 ,  0 . 0 5 ,  0 . 1 2 ,  0 . 1 2 ,  0 . 1 2 7 5 )  and 2) c i r c u m f e r e n t i a l  l i n e s  b e g i n n i n g  f rom t h e  e d g e  r = 1 
w i t h  i n t e r v a l s  i n  t h e  r a d i u s  r o f  0 . 1 ,  0 . 1 5 ,  0 . 2 5 ,  0 . 5 ,  1, 1, 1. F i g u r e  2 shows t h e  d e -  
c o m p o s i t i o n  o f  t h e  i n n e r  r e g i o n  1 ~ r ~ 2 .  The d i m e n s i o n s  o f  t h e  e l e m e n t s  a r e  r e d u c e d  as  
one a p p r o a c h e s  t h e  e x t r e m e  p o i n t  i n  t h e  c o n t a c t  r e g i o n  r = i and 8 = O c = 0 . 5 2 2 5 ~ .  I n  a l l  we 
o b t a i n e d  105 e l e m e n t s  and 886 unknown v a r i a b l e s ,  t h e  d i s p l a c e m e n t  c o m p o n e n t s .  

F i g u r e  3 shows t h e  s t a t e  o f  s t r a i n  i n  t h e  p a r t  o f  t h e  p l a t e  shown i n  F i g .  2.  The 
C a r t e s i a n  c o o r d i n a t e s  x and y f o r  any  node  i n  t h e  d e f o r m e d  s t a t e  i n  F i g .  3 a r e  d e f i n e d  by 

x ~ ( r J r u i ) c o s O - - u f s i n O ,  Y = ( r+u i ) s i nO+ufcosO .  

Here  r and O a r e  t h e  i n i t i a l  c o o r d i n a t e s  and one s u b s t i t u t e s  f o r  uz and u 2 n o r m a l i z e d  i n  s u c h  
a way t h a t  t h e  maximum a b s o l u t e  v a l u e s  a r e  a l l  n o d e s  o f  1, i . e . ,  t h e y  a r e  m u l t i p l i e d  by t h e  same 
p o s i t i v e  number f o r  a l l  d i s p l a c e m e n t  c o m p o n e n t s .  On a c c o u n t  o f  t h e  l i n e a r i z a t i o n ,  t h e  s egmen t  
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of the edge of the hole Oc~0~,is represented as the region of contact between the plate 
and pin and in Fig. 3 does not lie completely on the pin (semicircle with center at the ori- 
gin). 

The solid lines in Fig. 4 show the stresses at the edge of the hole. all is zero within 
the accuracy used in the part 8~8c, where there is no contact between plate and pin, and is 
negative in the contact part 8 < 8c; the 011 distribution in the contact area differs ap- 
preciably from the (20/~) cos 8 one represented in Fig. 4 by the dot-dash line. The circum- 
ferential stress 022 increases sharply at 8 < 8 c before the point where the plate contacts the 
pin at 8 = 8 c. In the contact range 8 > 8c, c22 decreases. The tangential stress intensity 
J is maximal in the contact part, but it does not have peaks such as are found from the rise 
in o22 at the point of contact between the plate and pin. Throughout the plate, the maximal 
values Oll= --5.4696, 022 = 6.7639, and J = 4.1073 are attained at the edge of the hole. 

Figure 5 shows o22 in the radial section 8 = 8 c. 

Specifying a large contact region increases the maximum stresses. The dashed lines in 
Fig. 4 show the change in o11 and c22 obtained on solving with (2.1), (2.2), (2.4) if 8 c = 
0.5~. If the contact region is shorter than it should be, o11 at the extreme point takes 
nonzero negative values. 
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